Problem 1
Given: Va, Vb, Vx, R1, R2, R3.
Find: Vc
Solution:
Va - Vc = I1 R1
Vb - Vc = I2 R2
Vx - Vc = I3 R3
I1 + I2 + I3 = 0
(Va-Vc) / R1 + (Vb-Vc) / R2 + (Vx-Vc) / R3 = 0
Va / R1 - Vc / R1 + Vb / R2 -Vc / R2 + Vx / R3 -Vc / R3 = 0
Va / R1 + Vb / R2 + Vx / R3 = Vc / R1 +Vc / R2 +Vc / R3
Va / R1 + Vb / R2 + Vx / R3 = Vc (1 / R1 +1 / R2 +1 / R3)
Vc = (Va / R1 + Vb / R2 + Vx / R3) / (1 / R1 +1 / R2 +1 / R3)
Va = V
Vb = V
Vx = V
R1 = Ω
R2 = Ω
R3 = Ω
Vc = V
Vc ≈ V
Problem 2
Given: R1, R2, ε1, ε2.
Find: I1
Solution:
I1 R1 - I2 R2 = ε1 + ε2
I1 + I2 = 0
I1 R1 + I1 R2 = ε1 + ε2
I1 (R1 + R2) = ε1 + ε2
I1 = (ε1 + ε2) / (R1 + R2)
Problem 3
Solution Strategy:
Circuit Kirchhoff's Equations
I1 R1 - I2 R2 = ε1 - ε2
I1 + I2 = 0
Solve the equations for the desired parameter
No comments:
Post a Comment