23 Electromagnetic Waves
v = λf
23.2 Speed of a Electromagnetic Wave
E = cB. (traveling wave) (23.1)
c = 1 / ( ε0
μ0)½ (23.2)
c = 3.00 ×
108 m/s
transverse wave
23.3 Electromagnetic Spectrum
700nm – 400nm
23.4 Sinusoidal Waves
plane wave
E = Emax
sin 2π( t / T
– x / λ)
= Emax sin (ωt
– kx)
B = Bmax
sin 2π( t / T
– x / λ)
= Bmax sin (ωt
– kx) (23.3)
Emax =
cBmax. (23.4)
E = ─Emax
sin 2π( t / T
+ x / λ) =
─Emax
sin (ωt
+ kx)
B = Bmax
sin 2π( t / T
+ x / λ) =
Bmax sin (ωt
+ kx) (23.5)
23.5 Energy I Electromagnetic Waves
u = ε0E2
/ 2 + B2
/ (2μ0) (23.6)
B =
E / c
= ( ε0
μ0)½
E
u = ε0E2
/ 2 + B2
/ (2μ0)
= ε0E2
/ 2 + (
( ε0
μ0)½
E)2
/ (2μ0)
= ε0E2 (23.7)
ΔU
= u ΔV
= (ε0E2)
(AcΔt)
S = (
ΔU / Δt
) = ε0cE2
S = (
ΔU / Δt
) = ε0cE2
= (
ε0
/ μ0)½
E2
= EB
/ μ0
= cu (23.8)
Sav
= ε0cEmax2/2
= (
ε0
/ μ0)½
Emax2/2
= EmaxBmax
/ (2μ0)
= cu (sinusoidal
wave) (23.9)
Sav
= uav
/ (
ε0
μ0)½
= cuav (sinusoidal
wave) (23.10)
I
= Sav
= ε0cEmax2/2
= (
ε0
/ μ0)½
Emax2/2
= EmaxBmax
/ (2μ0)
= cu (sinusoidal
wave) (23.11)
I
intensity
Radiation
Pressure
p
/ V
= ε0E2
/ c = EB
/ (μ0c2)
= S / c2 (23.12)
(
Δp
/ Δt
)
/ A
=
ε0E2/2
= (Sav
/ c2)
c= Sav
/ c =
I
/ c (sinusoidal wave) (23.13)
23.6
Nature of Light
wave
front, rays, geometric optic, physical optics
23.7
Reflection and Refraction
n
= c
/ v (23.14)
θr
= θa (23.15)
sin
θa
/ sin θb
= nb
/ na
na
sin θa
= nb
sin θb (23.16)
λ
= λ0
/ n (23.17)
nb
sin θb
= na
sin θa
→
sin θb
= sin θa
· na
/
nb
sin
θcrit
= sin 90º · na
/
nb
= 1
· na
/
nb
→
sin θcrit
= na
/
nb (23.18)
23.9
Dispersion c
= c(
f
), n
= n(
f
)
23.10
Polarization
linarly polarized, polarizing filter,
dichroizm, polarizing axis, polarizer,
I = Imax
cos2 ϕ (23.19)
Polarization
by Reflection
plane
of incidence, polarizing angle θp,
refracted beam, completely polarized
sin
θp
/ cos θp
= tan θp
= nb
/ na Brewster's
law (23.20)
Photoelasticity
23.11
Huygens's Principle
sin
θa
/ sin θb
= va
/ vb (23.21)
23.12
Scattering of light
No comments:
Post a Comment